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Although diverse, theories of visual attention generally share the notion that attention is controlled by some combination of
three distinct strategies: (1) exogenous cuing from locally contrasting primitive visual features, such as abrupt onsets or color
singletons (e.g., L. Itti, C. Koch, & E. Neiber, 1998), (2) endogenous gain modulation of exogenous activations, used to guide
attention to task-relevant features (e.g., V. Navalpakkam & L. Itti, 2007; J. Wolfe, 1994, 2007), and (3) endogenous prediction
of likely locations of interest, based on task and scene gist (e.g., A. Torralba, A. Oliva, M. Castelhano, & J. Henderson, 2006).
However, little work has been done to synthesize these disparate theories. In this work, we propose a unifying
conceptualization in which attention is controlled along two dimensions: the degree of task focus and the contextual scale
of operation. Previously proposed strategies—and their combinations—can be viewed as instances of this one mechanism.
Thus, this theory serves not as a replacement for existing models but as a means of bringing them into a coherent framework.
We present an implementation of this theory and demonstrate its applicability to a wide range of attentional phenomena. The
model accounts for key results in visual search with synthetic images and makes reasonable predictions for human eye
movements in search tasks involving real-world images. In addition, the theory offers an unusual perspective on attention that
places a fundamental emphasis on the role of experience and task-related knowledge.
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Introduction

The human visual system can be configured to perform a
remarkable variety of arbitrary tasks. For example, in a pile
of coins, we can find the coin of a particular denomination,
color, or shape, determine whether there are more heads
than tails, locate a coin that is foreign, or find a combination
of coins that yields a certain total. The flexibility of the
visual system to task demands is achieved by control of
visual attention.
Three distinct control strategies have been discussed in

the literature. Earliest in chronological order, exogenous
control was the focus of both experimental research (e.g.,
Averbach&Coriell, 1961; Posner&Cohen, 1984; Treisman,
1982) and theoretical perspectives (e.g., Itti & Koch, 2000;
Julesz, 1984; Koch & Ullman, 1985; Neisser, 1967).
Exogenous control refers to the guidance of attention to
distinctive, locally contrasting visual features such as color,

luminance, texture, and abrupt onsets. Theories of exogenous
control assume a saliency map, a spatiotopic map in which
activation in a location indicates saliency or likely relevance
of that location. In general, the saliency of a location expresses
howmuch that location stands out from its spatial or temporal
neighborhood in terms of its primitive visual features.
Attention need not be deployed in a purely exogenous

manner but can be influenced by task demands (e.g., Bacon
& Egeth, 1994; Folk, Remington, & Johnston, 1992;
Wolfe, Cave, & Franzel, 1989). The ability of individuals
to attend based on features such as color or orientation has
led to theories proposing feature-based endogenous control
(e.g., Mozer, 1991; Mozer & Baldwin, 2008; Navalpakkam
& Itti, 2007; Wolfe, 1994, 2007). In these theories, the
contribution of feature-contrast maps to the saliency map
is weighted by endogenous gains on the feature-contrast
maps, as depicted in Figure 1.
Experimental studies support a third attentional control

strategy in which attention is guided to visual field regions
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likely to be of interest based on the current task and global
properties of the scene (e.g., Biederman, 1972; Neider &
Zelinsky, 2006; Siagian & Itti, 2007; Torralba, Oliva,
Castelhano, & Henderson, 2006; Wolfe, 1998a). This type
of scene-based endogenous control seems intuitive: if you
are looking for your keys in the kitchen, they are likely to
be on a counter. If you are waiting for a ride on a street, the
car is likely to appear on the road not on a building. Even
without a detailed analysis of the visual scene, one can infer
its gist (Oliva & Torralba, 2001) and this gist can guide
attention.

A unifying framework

Instead of conceiving the three control strategies as
distinct and unrelated mechanisms, a key contribution of
this work is to characterize the strategies as components
of a broader control space. This control space represents
a continuous range of potential strategies that all share
the same underlying mechanism but are tuned along
two dimensions to yield different behavior. As depicted
in Figure 2, the two dimensions of the control space are
task specificity and contextual scale.
Task specificity refers to the degree to which control

exploits the current tasks and goals. High task specificity
refers to situations in which the attentional system is
strongly constrained by the nature or properties of the task.
Low task specificity occurs in situations where the
individual has no particular goal or when attention operates
in a task-independent manner. In this paper, we focus on
visual search, and consequently, tasks can be defined in the
currency of objects—i.e., a search for a specific object or a
class of objects. Within the context of visual search, high
task specificity refers to search for a particular object and
low task specificity refers to exploration in the absence of
a particular goal.
In the control space, the contextual scale dimension is

analogous to the granularity of image processing. At the
feature-level contextual scale, small regions in the image
are processed separately and saliency predictions for one

region are roughly independent of the predictions for a
different region. Conversely, processing at a scene-level
contextual scale is more holistic—general scene properties
extracted from the entire image are used to make saliency
predictions across the whole field of view. In the middle of
the continuum, saliency predictions are derived from all
features within a region roughly large enough to contain a
whole object but not the whole scene.
The two dimensions of the control space are helpful in

explicating the similarities and differences between the
three control strategies we have described. Exogenous
control appears in the lower left corner of the space in
Figure 2 because it operates independently of current goals
and uses a feature-level contextual scale. Feature-based and
scene-based endogenous controls are placed in the upper
region of the space because both operate with a high degree
of task specificity. However, they reside at different points

Figure 1. A depiction of feature-based endogenous control. The final saliency map is obtained by taking a weighted combination of the
primitive feature maps. The weights are used to highlight relevant feature channels.

Figure 2. A two-dimensional control space that characterizes
exogenous, feature-based endogenous, and scene-based endog-
enous control of visual attention (black points). The blue points
represent other attentional phenomena that have a natural
interpretation within this framework and are discussed later.
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along the contextual scale continuum. Feature-based
endogenous control classifies a small region as salient if
specific features are present in that location. Scene-based
endogenous control uses the whole image to determine the
gist of the scene. When searching for a specific object or
group of objects, the gist is then used to differentiate
regions of the scene by relevance.
What benefit is there to laying out the three strategies in

this control space? The control space offers us the means to
reconceptualize attentional control by illuminating the rela-
tionships among the various control strategies—highlighting
the dimensions along which one strategy is similar to and
different from another. In doing so, the control space
suggests additional strategies that might be employed by
attention. We return to this issue later, when we recharac-
terize other attentional phenomena in terms of the control
space.

Combining control strategies

Given the existence of at least three distinct control
strategies, one might ask how the strategies are intermixed.
A simple hypothesis is that control processes operate at a
single point in the control space, and that point is selected
so as to optimize performance in a specific environment. If
the selected point was in between two of the primary
strategies depicted in Figure 2, it might appear that multiple
strategies were operating simultaneously. Alternatively,
multiple strategies might be employed in parallel, and
attention would be governed by some combination of or
arbitration among the strategies.
Recently, several hybrid models have been proposed

that incorporate multiple strategies operating in parallel.
Torralba et al. (2006) present a model—which we refer to
as TOCH—that integrates object-specific scene-based
endogenous control with standard exogenous control. More
recently, TOCH was expanded to include target-specific
saliency by Ehinger, Hidalgo-Sotelo, Torralba, and Oliva
(2009). Navalpakkam and Itti (2007) combine exogenous
with feature-based endogenous control in a model we refer
to as NI. In the upgrade of Guided Search (GS) to the
current 4.0 version, Wolfe (2007) added bottom-up
exogenous activation and scene-gist processing to the
existing feature-based endogenous control. Siagian and Itti
(2007) propose an architecture—which we call SI—that
computes gist and exogenous saliency in parallel using the
same biologically plausible visual features. The exogenous
component drives the saliency map but can be aided by the
gist information.
Most of these hybrid models take an engineering

approach to attention—stacking different components
together to improve performance. In contrast, we present
a theoretical approach that wraps most of the functionality
of these hybrid models into one consistent framework that
encompasses any combination of strategies in the control
space. From the perspective of the control space, these

hybrid models combine task-specific processing at a scene-
level contextual scale with some form of processing at a
feature-level contextual scale. These models are therefore
focused on several points in the control space; in contrast,
our framework is capable of exploiting the whole space of
control strategies. Thus, we view this framework as a
generalization of hybrid models such as TOCH, NI, GS,
and SI.
In order to implement combinations of control strategies,

we must be able to specify a control strategy at any point in
the space. Previous models offer some guidance as to how
to implement the primary control strategies, which lie near
corners of the space in Figure 2. An immediate challenge,
however, is to characterize the interior of the control
space—what it means for a control strategy to operate at an
intermediate contextual scale and with an intermediate
degree of task specificity. Embedded in this challenge is the
difficulty of relating the primary control strategies such that
they share the same processing mechanisms. Parameteriz-
ing a model over a continuum of contextual scales seems
feasible by varying the granularity of image processing, but
how would varying degrees of task specificity be imple-
mented? To answer this question, it is useful to digress and
consider the role of experience in attention. By illuminating
the relationship between attentional strategies and experi-
ence, we formulate a novel hypothesis that strongly
intertwines attention and experience. This hypothesis
offers a natural way to represent varying degrees of task
specificity.

Experience-based attention

Consider the influence of experience on the three primary
control strategies. Exogenous control is typically envi-
sioned as a hardwired bottom-up process that is indepen-
dent of an individual’s experience (see Zhang, Tong, Marks,
Shan, & Cottrell, 2008, for an alternative view). Experience
plays a larger role in feature-based endogenous control:
task instructions or knowledge can modulate bottom-up
processes to amplify task-relevant features. Nonetheless,
representations in the attentional system are still considered
fixed and independent of experience. Scene-based endog-
enous control places a greater emphasis on experience.
Performance in a particular environment—e.g., city streets,
kitchens—depends on associations between coarse image
properties and scene types learned through experience.
These descriptions suggest that the influence of experi-

ence on attentional control varies depending on the specific
strategy employed. In contrast to this classical view, we
suggest here that all attentional control strategies can be
formally characterized as experience dependent.
We motivate this perspective with the observation that

experience appears to have an effect on attentional
processes that are typically thought of as exogenous. For
example, in figure–ground assignment, Peterson and Skow-
Grant (2003) find that the choice of figure is biased by past
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experience. In the domain of real-world images, Cerf,
Frady, and Koch (2008) and Cerf, Harel, Einhauser, and
Koch (2008) offer further support for the role of experience
in attention by comparing a standard exogenous model of
attention with an extended model that incorporates a face
detection component and other object recognition models.
The authors find that the addition of these components
significantly improves the correspondence between model
predictions and free-viewing human eye movements even
for images that do not contain any of the relevant objects.
Another argument for the fundamental role of experience

in attention comes from adaptation effects. Senders (1964)
shows that fixation frequency to components in an instru-
ment panel corresponds to the bandwidth (events per
second) of that component. More recently, Geng and
Behrmann (2005) find that locations with high spatial
probability—i.e., regions where more activity occurs—are
more likely to be selected by attention. In their contextual
cuing paradigm, Chun and Jiang (1998) show that
individuals can learn to predict target location contingent
on the spatial configuration of elements in a display. In an
interesting study combining chess and contextual cuing,
Brockmole, Hambrick, Windisch, and Henderson (2008)
show that experience with chess significantly affects atten-
tional performance on the search task. Although the fact
that attention can be adaptive does not imply that attention
always adapts, the results summarized in this section
suggest the parsimonious view that attentional processes
constantly adapt to the ongoing stream of experience, and
therefore, that attention should be viewed as fundamentally
knowledge or experience based.

Reconceptualizing the control space

Adopting the perspective that all varieties of attentional
control are fundamentally experience dependent, we return
to consider our control space (Figure 2) and, in particular,
the task specificity dimension. A control strategy that has a
high degree of task specificity necessarily requires experi-
ence with the particular task. However, control strategies
that have low task dependence (e.g., exogenous control)
have traditionally been viewed in terms of hardwired
bottom-up and experience-independent mechanisms. Here
we propose instead that exogenous control has a depen-
dence on a broad range of past experience, i.e., it depends
on every task. A pure exogenous control strategy would
thus be cast as “identify as salient locations that are inter-
esting based on the combination of all past experience on
a wide variety of learned tasks.” This novel perspective is
an important component of this work and distinguishes
our model from existing models.
With our focus on visual search, each specific task

corresponds to a target object, e.g., car keys, wallet, car,
traffic light. The task specificity dimension can thus be
recast in terms of the size of the subset of objects that guide
attention—with decreasing specificity as the set size

increases. A high degree of task specificity might corre-
spond to a single target object, e.g., a car or a person. An
intermediate degree of task specificity might be thought of
as search for a more general class of objects, e.g., the set of
all objects that are wheeled vehicles or living things. At the
low task specificity end of the spectrum, attention is guided
using all objects with which one has had experience.
Defining exogenous attention in this manner is an extension
of the concept presented in Cerf, Frady et al. (2008) and
Cerf, Harel et al. (2008). This generalization implies that
pure bottom-up attention does not exist as a separate
mechanism but is rather a special case of what has tradi-
tionally been viewed as top-down attentional control. In
line with this claim, Folk et al. (1992) have found that
involuntary attention capture is contingent on attentional
control settings.
With our reconceptualization of task specificity, we can

describe any control strategy via a set of modules that
specialize in particular targets. The modules must also be
characterized in terms of the other dimension of the control
space—the contextual scale at which they operate. This set
of modules can be cast in terms of a dual to the control
space, which we will call the module grid, depicted in
Figure 3. Like the control space, the module grid has two
dimensions, but the dimensions focus on implementation.
The rows of the module grid enumerate specific targets of
attention, and the columns specify an analog of contextual
scale, which we call range of influence and will explain
shortly. Each cell in the grid is a particular processing

Figure 3. A depiction of the module grid, which is a transformation
of the control space that emphasizes specific implementable
attentional mechanisms. Each control strategy—which corresponds
to a point in control space—can be understood as a collection of
grid squares (modules) in the module grid.
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mechanism that produces a saliency map given a visual
image.
Control strategies, which occupy a single point in con-

trol space (Figure 2), can occupy regions in module grid.
Figure 3 displays how the primary strategies in the control
space map onto the module grid. Exogenous attention
corresponds to a short range of influence and a combination
across all target objects. Feature-based endogenous atten-
tion also operates with a short range of influence, but only
those targets that have the defining features are employed.
Scene-based endogenous attentional guidance utilizes a
long range of influence and incorporates a small set of
targets.
The second dimension of the module grid, range of

influence, elucidates how a continuum of contextual scales
can be implemented. We describe this dimension in terms
of the spatial range of influence that a visual feature in the
image has on the saliency map. A short range of influence,
which corresponds to a feature-level contextual scale,
implies that saliency map activation at a given location is
determined only by nearby visual features. Conversely, a
long range of influence implies that activation anywhere in
the saliency map can be influenced by features anywhere in
the visual field, i.e., the whole scene. Emphasizing the role
of experience, the actual range of influence a visual feature
will have depends on statistics of the task environment
and past experience: even if the potential connectivity is
present for long-range influences, the realization of these
influences will depend on the particular task environment,
determined through experience.
Through experience, each module becomes specialized

for a particular target. We have shown that each primary
strategy can be implemented as a subset of modules in one
column of the module grid. Similarly, the module grid can
represent any combination of strategies in the control space
if multiple modules operate in parallel and their saliency
maps are merged. We call this framework TASC, an
acronym on TAsk-Specific and Contextual-scale control.
Rather than viewing TASC as an alternative theory to
existing models such as TOCH, GS, and SI, we view TASC
as a generalization of these earlier theories, and each of
these theories can be seen as a specific instantiation of
TASC.

An illustration of saliency over the module
grid

To give a concrete intuition about the operation of
TASC, we present an example illustrating the model’s
behavior. The input to TASC is an image—natural or
synthetic—and the output from TASC is a saliency map.
Each module in the TASC module grid yields a saliency
map associated with a specific target object and range of
influence as shown in Figure 4. This example shows a street
scene and the saliency maps for three different objects:
people, trees, and sidewalks. In its full implementation,

TASC would maintain representations for a large collec-
tion of objects. At the short range of influence, saliency
maps generally make fine-grained predictions. These maps
are similar to those obtained by feature-based endogenous
models like GS 2.0. In contrast, the saliency maps from
modules with a long range of influence show coarse regions
where the object is likely to appear.
The saliency maps associated with the module grid are

only an intermediate representation in TASC. The final
output of TASC—a single saliency map—is obtained by
selectively combining module saliency maps. As men-
tioned above, this selective combination allows for more
advanced attentional strategies. Figure 5a presents a simple
example of a combined saliency map that could result from
TASC. This map is a combination across 11 objects and all
ranges of influence. Figure 5b shows separate saliency
maps for each of the 4 ranges of influence where a com-
bination is performed across all 11 object modules. The
map at the short range of influence corresponds to the
exogenous control strategy.

TASC implementation

As with most models of attention, TASC assumes that
computation of the saliency map can be performed in
parallel across the visual field with relatively simple opera-
tions. If computing saliency was as computationally
complex as recognizing objects, there would not be much
use for the saliency map because—according to the tradi-
tional early selection view of attention—the purpose of
the saliency map is to determine how to focus the lim-
ited processing resources available for performing object
recognition.
In TASC, computation of the saliency map is parallelized

across the components of the module grid as depicted in
Figure 6. Each TASC module is configured to perform an
association from the retinotopic image to the saliency map.
The modules all have the same architecture, though they
are parameterized to implement varying ranges of influence
and to be specialized for specific target objects. To obtain
the single final TASC saliency map (bottom of Figure 6),
the individual module maps are selectively combined.

Module implementation

A detailed description of the implementation of a module
is presented in Appendix A, and we summarize here.

Patch processing

A specific range of influence is implemented in TASC by
dividing the image into overlapping patches of a specific
size. Each image patch is processed independently and
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Figure 4. A street scene and saliency maps produced by TASC in response to this input for three different target objects and four ranges of
influence.

Figure 5. A saliency map (b) for the image in (a) using the naive control strategy in TASC—combine all maps in the module grid. (c) The
saliency map overlaid on the original image. (d) Separate saliency maps for the 4 ranges of influence where all object modules are
combined. These results come from a simulation with 11 different target object representations.
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contributes only to the patch in the saliency map at the same
location. For modules with a short range of influence, small
patches are used so that saliency predictions are based only
on local features—i.e., those within the small patch. At the
longest range of influence, the entire image is treated as a
single patch that enables image features to have an effect
on all saliency locations no matter how distant. The short
range-of-influence modules correspond well to the NI
model, whereas the long range-of-influence modules are
more similar to the global gist processing component of
TOCH. The red boxes in Figure 6 display the patch sizes
for the 4 ranges of influence, which cover 1.56%, 6.25%,
25%, and 100% of the image. For all ranges of influence,
the patches overlap by 50%.

Image processing stages

Rather than creating yet another model of attention, our
aim in developing TASC was to generalize existing models
such that existing models can be viewed as instantiations
of the more general TASC framework. The module grid
(Figure 3) encompasses the primary control strategies, and
consequently, it generalizes the models that implement
these strategies. To complete this generalization, the image
processing stages of TASC modules were chosen to
overlap with those of many existing models, including
NI, GS, TOCH, and SUN. Table 1 lays out the standard

processing stages found in many models and offers a
comparison between TASC and four previously men-
tioned models. In NI, GS, and TOCH, color and
luminance features are derived from the raw pixel values
and orientation features are obtained using Gabor filters.
SUN extracts features qualitatively similar to contrast-
enhanced color, orientation, and luminance features using
a set of independent component analysis (ICA) filters.
Dimensionality reduction is used in TOCH and SUN
because both models process larger regions of the image.
In TASC, the processing of each patch begins with a

feature extraction stage where red, green, blue, and yellow
color opponency values and 4 Gabor orientation features
are obtained for each pixel location in the patch. Next, the
values in each feature channel are compared to neighboring
values in the same channel to yield center–surround con-
trast enhancement. Each feature activation value is scaled
by the proportion of regional activation for the relevant
feature channel that can be attributed to nearby locations.
This results in the suppression of feature activations in
homogenous image regions. Contrast enhancement is
followed by two dimensionality reduction stages that
eliminate redundancy and shrink the feature data to a
computationally manageable size. A preliminary reduction
is obtained by subsampling the feature data, averaging
neighboring values within each feature channel. Sub-
sampling is followed by applying Principal Components

Figure 6. A schematic depiction of TASC. The primary components of TASC are the modules that correspond to specific target objects
and ranges of influence. Each module processes the entire image independently and obtains a saliency map unique to that module. The
final saliency map is computed by combining across all module saliency maps. This depiction shows 4 ranges of influence and 3 sample
target objects. However, there could be more ranges of influence and certainly would be many more object modules.
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Analysis (PCA) to extract only the most important feature
properties of the patch. PCA is performed separately for
the eight feature channels with an increasing number of
components retained as the range of influence becomes
longer. Although more principal components are retained
at the longer ranges of influence, the total amount of
feature information preserved across the whole image is
greater for the shorter ranges of influence because there
are far more patches. The amount of information retained
for the entire image is chosen to be roughly consistent
with NI and TOCH, which reside approximately at the
two ends of the range of influence spectrum. A different
PCA projection is learned for each feature channel and
each range of influence from a database containing
roughly 2,500 real-world and synthetic images. For a
given feature channel and range of influence, though, the
same projection is used for all image patches thus yielding
a location-independent transformation.

Task-specific associative memory

To specialize modules for particular tasks, each module
includes a task-specific associative memory that maps from
the visual representation described in the previous section
to an activation map that indicates the presence of an
object.
NI, GS, TOCH, and SUN all use some sort of task-

specific association to obtain saliency maps. In NI, linear
weights for the individual feature channels are learned from
a set of test images related to the search task. Similarly, GS
uses a set of predefined gains to modulate the weight of
each feature channel. TOCH achieves a task-specific
activation by associating global features with likely object
locations through a weighted sum of linear regressors
where the weights depend on the global features in a
nonlinear way. SUN uses a support-vector machine to
make a target present/absent classification based on the
image features. Though these approaches differ in their
method, they all share the property that saliency is assigned
according to some primarily linear function of the image
representation.
In TASC, the associative memory is implemented as a set

of neural networks distributed across the patches in the
image. For each patch, there is set of input units to the
network representing the patch data after dimensionality
reduction. Each set of input units is fully connected to a set

of output units via a layer of hidden units. The hidden units,
however, are linear, and their purpose therefore serves to
limit the rank of the mapping from input to output. The final
patch saliency map is obtained by passing the network
outputs through a logistic squashing function. To obtain
the complete module saliency map, outputs from the indi-
vidual patches are averaged where they overlap. This
module saliency map is then smoothed via convolution
with a Gaussian kernel to reduce artifacts due to patch
edges and to help assure consistency across neighboring
saliency values.
Because the shorter ranges of influence have far more

patches than the longer ranges of influence, we make the
hidden-layer bottleneck smaller at the shorter ranges, just
as we chose a smaller number of principal components at
the shorter ranges of influence. Our choice of rank obtains a
roughly equal number of descriptive features per pixel
across the four ranges of influence.
The linearity of the association network is important

because it restricts the complexity of the mappings that can
be learned. As a result, the model can at best perform a
quick-and-dirty sort of object detection. We contrast this
type of processing with the more elaborate, detailed, and
certainly nonlinear processing required for full-blown
object recognition. This distinction is key from our
perspective, because without it, the roles of attention and
object recognition highly overlap: both have the goal of
determining where target objects are in an image. From the
perspective of an experience-based theory of attention, the
role of attention is to do a rapid, roughly parallel analysis
of the visual field in the service of a goal, and the role of
object recognition is to do a more thorough but resource-
limited analysis of locations likely to contain goal-relevant
information.
For task-specific network training, we use supervised

learning, where the training data come from the LabelMe
image database (Russel, Torralba, & Murphy, 2008), a
large collection of images labeled by pixel according to
the object present at that corresponding location. During
training, each image is presented to the model, the model
computes a dimensionality reduced feature representation
for each patch, and this representation serves as input to the
patch-specific neural networks. Each network is trained
with a target output containing values of 1 at all locations in
the patch where a given target object appears and 0 at all
other locations. Training is performed in batches using the

Stages NI GS TOCH SUN TASC

Feature extraction Color X X X X X
Orientation X X X X X
Luminance X X

Contrast enhancement Center–surround X X X X
Dimensionality reduction Subsampling X X

PCA X X X

Table 1. Processing stages of TASC compared to four existing models of attentional control.
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backpropagation algorithm to update weights and contin-
ues until a local optimum in error is obtained.

Summary of module implementation

The inner workings of a TASC module are summarized
in Figure 7, which depicts the person module at the second
longest range of influence. As shown in the center panel,
the image is divided into overlapping patches that are each
processed independently and contribute only to their corre-
sponding region in the final saliency map. A saliency map
for each patch is obtained by applying a learned asso-
ciative mapping to the image representation derived from
the initial pixel values through feature extraction, contrast
enhancement, and dimensionality reduction (right panel
of figure).

Combining multiple modules

So far we have discussed how each module in the module
grid computes a saliency map for an input image. Each
individual module could be used to guide attention.
However, to implement exogenous control or even more
complex strategies, such as hybrid models like TOCH, it is
necessary to combine the saliency maps from a collection
of modules. It is this combination of modules that gives the
TASC framework its ability to model attentional guidance
that varies in task specificity and utilizes multiple con-
textual scales.
We explored two rules for combining module saliency

maps: averaging across modules and taking the maximum
output across modules. In our implementation, we chose
the max rule because it has a rich history in the literature on

visual information processing (Gawne & Martin, 2002;
Lampl, Ferster, Poggio, & Riesenhuber, 2004; Riesenhuber
& Poggio, 1999; Yu, Giese, & Poggio, 2002; Zhaoping &
May, 2007; Zhaoping & Snowden, 2006). Through simu-
lations, we also found that the max rule produces saliency
maps that are more consistent with experimental results.
Another important aspect of module combination is the

decision of which modules to include. For free viewing
simulations, i.e., pure exogenous control, in line with our
claim that exogenous control draws on all past experiences,
all modules are used in the combination. For simulating
more constrained visual search experiments, TASC only
uses only a subset of modules that are relevant to the search
goals. In the current implementation, we avoid making
specific assumptions about how modules are selected. It is
certainly possible that the attentional system learns a more
complex distribution over modules that is used to perform a
weighted combination across all modules. This form of
attentional learning is interesting and worthy of future
investigation but is beyond the scope of the present paper.

Modules trained for simulations

For all the simulations presented in the Simulations of
TASC section, we use one parameterization of the model
that includes a collection of modules chosen to allow
testing with a wide range of attentional tasks. This
versatility is achieved by training a diverse set of object
modules using the 4 ranges of influence presented earlier.
The simplest object modules used are those trained for a
single feature: red, green, blue, vertical, and horizontal.
These modules are trained from a set of 500 images
containing vertical and horizontal bars of different colors
with labels appropriate to the target of interest. In addition

Figure 7. The inner workings of one of the TASC modules shown in Figure 6 (the person module at the second longest range of influence).
As the middle enlargement shows, the image is first divided into overlapping patches with a patch size that depends on the range of
influence. Each patch is processed independently to obtain a patch-specific saliency map. These overlapping patch maps are then
averaged to form the module saliency map. The right side of this figure depicts the image processing stages and the associative mapping
applied to each patch.
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to these simple modules, we use real-world images from
the LabelMe database to train modules for the following
objects: car, person, bike, sidewalk, road, building, tree,
window, light, head, sign, mug, and painting (with
roughly 200–800 images per object). The model param-
eters were chosen a priori based on existing models and our
intuitions about sensible information bottlenecks at each
stage of processing. We wish to emphasize that these
parameters remain fixed for all simulations. As a result, the
only variability from one simulation to the next is the
selection of relevant modules for the specific attentional
task. Though in some cases this generality inhibits
TASC’s performance relative to other attentional models,
we feel that this is balanced by the wide range of
phenomena we explain with one fixed model.

Simulations of TASC

Having described our implementation of TASC, we
present simulations to demonstrate TASC’s flexibility in
accounting for a diverse set of findings from the attentional
literature. Our goal in presenting simulation results from
TASC is to demonstrate the breadth of the model. TASC
provides a coherent, integrative framework for interpreting
a wide range of attentional phenomena, phenomena that
have previously been addressed by disparate theoretical
frameworks.
We begin with several simulations that confirm TASC’s

ability to use the primary control strategies that motivate
the control space. That TASC successfully accounts for the
human data in these tasks is not too surprising given that the
implementation of TASC was chosen to be consistent with
previous models that also correctly capture human behav-
ior. Still, there is value in these simulations because they
show that one single framework is capable of accounting
for diverse types of human behavior—few models have
been subjected to as wide a range of attentional tasks. From
here, we explore other regions of the control space and ask
how they relate to various types of attentional behavior. We
find that TASC yields a natural explanation for phenomena
such as contextual cuing and figure–ground assignment that
do not naturally fall out of other models. Furthermore,
TASC’s dependence on experience conforms well with
results in spatial probability cuing tasks and with sequential
effects found in attention.
Because of the range of experimental paradigms and

tasks we model, it is worth noting again that the same
TASC parameters are used for all simulations; the only
difference from one simulation to the next is the subset of
modules that contribute to the saliency map. TASC can
handle both real-world images and simple displays of the
sort used in psychological experiments. In contrast to some
attention models in the psychological literature, TASC
starts not with an abstract data structure representing

presegmented features but with raw pixel images. This
same input representation is used for both artificial and
real-world tasks.

Visual search

Visual search tasks require that an individual detect a
target element in a display surrounded by distractor
elements. Visual search is one of the most extensively
studied tasks in the psychological literature. (See Wolfe
(1998b) for a meta-analysis of a wide range of visual search
experiments and Wolfe and Horowitz (2004) for a review
of the attributes that guide attention.) The seminal work of
Treisman and Gelade (1980) revealed what appeared at the
time to be a fundamental dichotomy between feature search
and conjunction search. In feature search, the target differs
from all distractors along a single-feature dimension; for
example, the target is red and the distractors are green (see
the display at the left of Figure 8a). In conjunction search,
the target is defined by a conjunction of features and shares
one feature in common with each distractor; for example,
the target is a red vertical bar among distractors that are
green verticals or red horizontals (see Figure 8b). Feature
search is efficient in that search time is not dependent on the
number of distractors in the display; conjunction search
is inefficient, due to the increased confusability between
targets and distractors. Any account of visual search needs
to start by explaining the distinction between feature and
conjunction searches. This explanation is a necessary but
not sufficient condition for the plausibility of a theory. The
dichotomy between feature and conjunction searches has
given way to many subtleties and quirks that populate the
literature. Our goal in this work is not to explain visual
search in all its detail but to demonstrate that TASC is a
plausible candidate to tackle the visual search literature.
Both feature search and conjunction search require a

feature-based endogenous control strategy because the
characteristics of the target are known in advance. In
contrast, the oddball detection or pop-out search paradigm
requires the use of an exogenous control strategy. In an
oddball-detection task, the target differs from distractors
along one feature dimension, but the feature dimension
and the target feature value are not specified in advance of
a trial. For example, the participant might be required to
find a red target among green elements, a green element
among red, a vertical among horizontals, or a horizontal
among verticals (see the display in Figure 8c). The target
feature changes from trial to trial and thus part of the
task involves determining the relevant discrimination on
the current trial. In addition to capturing the dichotomy
between feature and conjunction searches, an attentional
model must also yield efficient search for oddball-detection
tasks.
To model visual search, we construct displays that

contain elements varying along two feature dimensions,
color and orientation. To assess search performance, we
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require a measure of response latency to detect a target as a
function of the number of distractors in the display. (The
efficiency of search is reflected in the slope of this curve.)
How are TASC’s saliency maps translated into response
latencies? We adopt an assumption from GS 2.0 (Wolfe,
1994) regarding how the saliency map is used in search. GS
2.0 supposes that display locations are examined in order
from most salient to least, and that response latency
increases linearly with the number of display locations
examined. To compute the saliency rank of a display
element, the maximum saliency value in the immediate
region of the display element is determined, and elements
are ranked by saliency. One could embellish TASC to use
the response accumulation mechanism of GS 4.0 (Wolfe,
2007) to obtain more realistic response times. However, the
response latencies on average would still be monotonic in
saliency ranking.

Feature search
Feature search is the paragon of paradigms requiring a

feature-based endogenous control strategy—subjects are
searching for the presence of one particular feature in an
image. In TASC, feature-based endogenous control is
achieved by selecting the row of the module grid that
corresponds to the feature of interest. As discussed in the
TASC implementation section, the model used for all

simulations includes modules for 5 basic feature objects:
red, green, blue, horizontal, and vertical.
To simulate feature search, TASC is presented with a set

of 300 novel images, each of which has exactly one target
that has the same property for all images (e.g., the target
is always red). The set of images is divided into an equal
number of displays with 4, 8, and 12 distractors. TASC
yields a saliency map for each image by combining across
the four ranges of influence for the appropriate target
object row. The left panel of Figure 8a shows a sample
display for red-target feature search with 8 distractors and
the activation of saliency maps across the four ranges
of influence. The location containing the target is highly
salient at each range of influence, and no other locations
are salient, suggesting efficient search. Clearly, the target
location in the combined saliency map will have more
activity than any other location. Figure 9a shows the mean
target ranking as a function of display size averaged across
5 simulations each with a different defining target feature
including red, green, blue, vertical, and horizontal. Each
data point corresponds to the average target ranking across
500 displays with the specified number of distractors.
Regardless of the number of distractors in the display,
TASC obtains a saliency ranking of 1 for the target ele-
ment, suggesting a fast response time that is independent
of display size, consistent with behavioral studies showing
efficient feature search.

Figure 8. Saliency maps at 4 ranges of influence for three different visual search paradigms: (a) feature search—a single red target among
green distractors, (b) conjunction search—a single red vertical among green verticals and red horizontals, and (c) oddball search—a
singleton exists in each image, but the specific features of the target and the defining feature dimension are unknown before the trial.
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Feature search is efficient in TASC because the contrast
enhancement stage strengthens the target feature value
and the neural net only activates regions that contain the
target feature. Although TASC is trained to perform fea-
ture search, the model is agnostic as to whether this training
corresponds to experience within an individual’s lifetime
or experience on an evolutionary time scale. The main
claim of the model is that feature search is not special;
it relies on the same processing mechanisms as any other
search task.

Conjunction search

To perform single-feature search, TASC employs mod-
ules that respond to the primitive feature that defines a
target. To perform conjunction search, TASC simply
combines the outputs from the two module rows that
represent the component features. For example, Figure 8b
shows the saliency maps for a red vertical target, obtained
by combining the outputs of red and vertical modules
(shown here before combining across ranges of influence).
In contrast to the saliency maps for single-feature targets,

which show a strong separation between targets and
distractors (Figure 8a), the saliency maps for conjunction
targets have significant spurious activation. The exact
pattern of activity depends on the configuration of
elements, because the contrast and dimensionality reduc-
tion stages of the model are influenced by local config-
urations. Figure 9b shows that the saliency rank of the
target increases steeply with the number of distractors in
the display, suggesting that TASC is unable to reliably
detect a conjunction target. This result is consistent with the
significant positive search slope found in classic conjunc-
tion search experiments.

A key feature of TASC responsible for its inefficiency on
conjunction search is the max rule used for combining
saliency maps of different targets (here, red and vertical).
The max operator yields a roughly 1:1 saliency ratio for
targets versus distractors, whereas summing activations
from the two saliency maps yields a 2:1 saliency ratio on
expectation.
Note that the saliency map activations are not random. If

they were random, then the mean rank would, on expec-
tation, be half the number of items in the display. The
observed rankings are better, indicating that some infor-
mation about the conjunction is available to the model.
Specifically, the saliency of a red vertical element is, on
expectation, higher than the saliency of an element that is
just red or just vertical. This is a consequence of the
presence of noise in the activations due to configuration
and compression effects. For example, if the activations
of red and vertical features have a Gaussian distribution
with mean 1.0 and standard deviation 0.10, then the
max operator should produce, on expectation, a target-to-
distractor activation ratio of 1.06. This result occurs
because the expected value of the max of two indepen-
dent and identically distributed random variables is greater
than the expected value of a single random variable with
the same distribution.
As we explained earlier, the max operator was motivated

from the fact that max essentially implements a disjunction,
and disjunctions are needed to vary the task specificity as
we have defined it. According to the TASC framework, a
fundamental dimension of control is this task specificity,
and we conjecture that controlling task specificity is
evolutionarily more useful than having the capability to
perform conjunction search. The architecture is thus
optimized for its typical use—searching for objects with

Figure 9. Mean target-saliency ranking for three visual search tasks in TASC as a function of the number of distractors in the display.
Response time is assumed to be monotonic in target ranking. (a) Search for a target defined on one feature dimension (e.g., red among
green distractors), (b) a classic conjunction search task (e.g., red vertical target among green vertical and red horizontal distractors), and
(c) oddball-detection task in which the target is a singleton along one dimension, but the dimension is not specified in advance of a trial.
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varying degrees of specificity—not the artificial laboratory
task of conjunction search.
Thus, we did not simply design inefficient conjunction

search into TASC in order to be consistent with behavioral
data. Although the model’s design could be altered to
improve conjunction search, the alterations would have
negative consequences to the model’s other abilities.
Inefficient conjunction search might therefore be a reflec-
tion of design trade-offs in the cognitive architecture.
If the same conjunction task was repeatedly practiced

over a long period of time, one might expect that a new row
of modules would be formed specifically for the conjunc-
tion. Just as an individual who regularly searches for people
will likely have modules tuned to detecting people, an
individual who is always looking for red–vertical bars
might have a row of modules customized to objects that are
red and vertical. TASC predicts that search would become
more efficient as a module row becomes customized to the
search object because the max combination across two
module rows would be replaced by the more precise
response of one row. Consistent with this prediction in
TASC, experiments have shown that many search tasks that
are inefficient at first become more efficient with extended
experience (e.g., Caerwinski, Lightfoot, & Shiffrin, 1992;
Leonards, Rettenbach, Nase, & Sireteanu, 2002; Mruczek
& Sheinberg, 2005; Sireteanu & Rettenbach, 2000;
Steinman, 1987).
One exception, however, occurs with synthetic dis-

plays that contain conjunctions of color and orientation
(Leonards et al., 2002; Sireteanu & Rettenbach, 2000).
Regardless of the amount of experience with conjunction
targets of this type, search remains inefficient. Why can a
car saliency module, for example, be learned to facilitate
efficient search, but a red–vertical saliency module cannot?
The answer is likely rooted in the difference between
conjunction-search targets in synthetic displays and objects
in real-world scenes. Localization of a synthetic conjunc-
tion target requires precise alignment of primitive features.
In contrast, features in real-world objects are generally
more redundant and their exact alignment is usually not
needed for identification. It is likely that the quick and dirty
process embodied by TASC for object detection will lose
this precise alignment of which color feature goes with
which shape feature in a dense neighborhood of many
colored shapes. When the alignment of primitive features
is lost, the target can no longer be discriminated from
the distractors and search becomes inefficient. Though the
current implementation of TASC yields some ambiguity
in the alignment of features due to dimensionality reduc-
tion, efficient search was obtained for conjunction displays
when a single module row was trained for the conjunc-
tion target. We attribute this performance to the arbitrary
selection of patch sizes, dimensionality reduction param-
eters, and display sizes. A more accurate selection of these
settings would likely yield inefficient conjunction search
even when a single module row is trained on the
conjunction.

Oddball-detection search
In an oddball-detection or pop-out search task, the target

is defined only by its contrast with the distractors. On one
trial, the target may be the red item among green, and on the
next trial, the target may be the vertical among horizontals.
The task precludes knowing the target’s featural identity in
advance of a trial. Consequently, oddball detection is
facilitated not by endogenous control but by detecting local
contrast for any feature on any dimension. The notion of
exogenous attention in TASC is ideally suited for oddball
detection. In TASC, exogenous attention is defined as the
combination (disjunction) of many object-specialized
modules. To simulate the oddball-detection task, TASC was
shown a set of novel images, each containing an array of 4, 8,
or 12 homogeneous distractors, and a single target having a
different value on one feature dimension (color or form). The
critical dimension and feature values vary from trial to trial.
On each trial, an overall saliency map is obtained by
combining across the TASCmodules tuned to the 5 primitive
feature objects: red, green, blue, horizontal, and vertical.
Figure 8c presents an example of one trial of the oddball-

detection task and the resulting saliency maps for each
range of influence. The three shortest ranges of influence
obtain greater saliency for the target than other locations, as
would the combination across the four maps. However, the
target–distractor saliency ratio is lower for oddball detec-
tion than for feature search. Figure 9c shows the saliency
ranking for the oddball-detection simulation. Most impor-
tantly, the graph does not show a systematic search slope:
the target does pop out regardless of display size. However,
as one would expect by examination of the sample saliency
maps in Figure 8, the mean saliency ranking of the target is
somewhat higher in oddball detection than in feature
search, predicting that oddball detection should be slower
than feature search. Finding direct evidence of this
prediction in the literature is a challenge, but there is
indirect evidence (e.g., Lamy, Carmel, Egeth, & Leber,
2006), and it would seem intuitive considering that feature
search is more narrowly delineated. Typical theories of
exogenous control would not necessarily predict a distinc-
tion between feature and oddball searches.
TASC is efficient in oddball detection primarily because

when there is an oddball on one dimension (i.e., color or
orientation), the contrast enhancement stage will amplify
the activity of the oddball target and will suppress activity
of the uniform, homogenous surrounding distractors.
Because each module’s associative network is roughly
linear, enhancement of the target early in processing will
propagate to enhancement of the saliency activation at the
output stage. Because oddball detection is defined in TASC
as the combination of all primitive feature modules, the
combination of module outputs may have a slight damp-
ening effect on the target’s relative salience. This dampen-
ing effect is evident in Figure 8c, where all elements of the
display have some saliency. Nevertheless, the target gener-
ally has the greatest saliency, leading to search times that
are independent of the number of distractors.
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Real-world images

The previous simulation demonstrated that the notion
of exogenous control as defined by TASC yields sensible
results for the oddball-detection task. It is natural to ques-
tion whether TASC’s form of exogenous control is appro-
priate not only for artificial displays used in experimental
tasks but also for real-world vision and attention. Figure 5a
shows a street scene and the corresponding saliency map,
Figure 5b, obtained in TASC by combining across the
shortest range of influence modules for all 13 target objects
trained with real-world images. Although the result seems
reasonable, it is difficult to judge. Consequently, method-
ologies have been developed to evaluate theories of
exogenous control by comparing locations deemed to be
salient by a model to locations where individuals tend to
fixate during free viewing. Zhang et al. (2008) explore
several methodologies and compare their model SUN to the
models of Bruce and Tsotsos (2006), Gao and Vasconcelos
(2007), and Itti, Koch, and Neiber (1998). They find that
SUN and the model of Bruce and Tsotsos (2006) perform
similarly and outperform the other two models.
We have chosen not to subject TASC to this formal

evaluation, for the following reason. TASC defines exog-
enous control as the combination across all object models
that have ever been useful. The current implementation of
TASC—with 13 real-world objects chosen from a fairly
arbitrary set based on the availability of labeled data—does
not reflect the broad and diverse set of objects to which
individuals are exposed. Nevertheless, we expect that a
more complete implementation of TASC should perform
comparably to SUN because TASC and SUN are based on
similar theoretical assumptions about the nature of exog-
enous control. Like TASC, SUN claims that a lifetime of
experience determines which features of the visual world
should capture attention. However, the two models make
different predictions about how experience is used. Specif-
ically, SUN posits that exogenous attention should be
directed to locations containing atypical features—features
that are highly unusual based on past experience. In con-
trast, TASC posits that exogenous attention is based on
past experience with specific tasks. It seems certain that
experimental tests could be designed to distinguish between
these two hypotheses. Although the current implementation
of TASC—with only a handful of task-specific modules—
precludes a formal evaluation of its hypothesis concerning
exogenous attention in real-world scenes, we can certainly
evaluate TASC on specific tasks in real-world scenes. We
turn to this challenge next.
The simulations to this point have demonstrated that

TASC is capable of utilizing two of the three primary
control strategies discussed in the Introduction section:
exogenous and feature-based endogenous. Torralba (2003)
suggests that scene-based endogenous control is also a
relevant attentional strategy for real-world images. In
TASC, scene based-endogenous control corresponds to

control that operates with a high degree of task specificity
and at a scene-level contextual scale. Now we verify that
TASC can integrate scene-based endogenous control by
testing the model on a set of images and corresponding
human eye-movement data from Torralba et al. (2006). By
evaluating the overlap between TASC saliency predictions
and human fixations, we demonstrate that TASC matches
human eye-movement data more accurately than a simple
exogenous model and that it performs roughly as well as
TOCH, which combines scene-based endogenous control
with exogenous control.
Torralba et al. (2006) perform a rigorous analysis of

TOCH by comparing saliency predictions from the model
to human eye movements recorded for the same set of
images. The experiment in Torralba et al. involved three
different search tasks over a set of images that contained
indoor and outdoor scenes. For each target object—person,
mug, and painting—an ordered sequence of fixation
locations for each image was collected from eight partic-
ipants. Saliency maps for each image were also obtained
from a version of TOCH tuned to the relevant target object.
The model’s performance for each image was measured by
computing the percent of participant fixations within the
most active regions of the saliency map. These “most active
regions” were defined to be the set of locations whose
saliency is ranked in the top 20% of the saliency distribu-
tion for an image. The saliency maps of TOCH were
compared to saliency maps representing cross-participant
consistency, which provided a useful upper bound on
possible model performance. For additional comparison,
Torralba et al. (2006) also obtained saliency maps from
a simple exogenous model.
To assess TASC’s performance on real-world images, we

tested it on the same set of images used by Torralba et al.
(2006). Other state-of-the-art models (e.g., Ehinger et al.,
2009; Kanan, Tong, Zhang, & Cottrell, 2009) have reported
similar or better performance than TOCH, but for sim-
plicity, we assess TASC’s performance in the context of
the results presented in Torralba et al. The set of images
used for testing was excluded from TASC’s training set.
Saliency maps were generated from the object module
row relevant to the specific task and performance was
measured using the method described above. Figure 10
presents the performance of TASC, along with results
reproduced from Torralba et al. The results are divided by
target object and by whether the target was present or
absent. Each bar graph is further divided along the abscissa
by fixation number within a trial. Thus, the light blue bar
in the upper left bar graph corresponding to fixation 1
expresses that for the person search task with target present
images, on average about 65% of the participants’ first
fixation in an image fell within the 20% most active region
of the TASC saliency map for that image. Across all search
cases and fixation numbers, TASC’s performance is, on
average, better than the simple bottom-up model (BU) and
slightly worse than TOCH.
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It is important to note that the TASC implementation
used here was not optimized for these images and search
tasks. Instead, the model parameters were the same as those
used in all other simulations including those with synthetic
images. Apart from the lack of parameter tuning, another
major explanation for why TASC performs worse than
TOCH in this simulation is that TASC does not include any
exogenous control—i.e., only one module row is used.
Thus, the model is completely insensitive to any exogenous
factors that might capture human attention. Exogenous
control could be added to TASC for this simulation by
including a large set of target objects. However, this was
not central to the goal of the experiment, which was to show
that TASC can utilize scene-based endogenous control.
Performance in this simulation was also limited by the
naive assumption that for a given task, all ranges of
influence are equally relevant. These two limitations are
likely responsible for TASC’s relatively poor performance
in the mug search. This relationship can be understood by
noting that the performance of the BU model is closest to
TOCH in mug search. Because TOCH consists of a bottom-
up model filtered by global contextual guidance, the sim-
ilarity between TOCH and BU in this task suggests that

mug locations are only weakly predicted by global scene
properties. Hence, the bottom-up component of TOCH,
which operates on local feature information and employs
exogenous control, is responsible for most of the model’s
predictive power. In the naive version of TASC, however,
only one row of object modules is used and all ranges of
influence are combined equally thus causing a dilution of
the shortest range of influence by the longer ranges. In
fact, the saliency maps obtained from the shortest range of
influence alone perform similarly to TOCH and BU in the
mug search task. As discussed in the TASC implementation
section, a more complex implementation of TASC would
model the relevance of all modules to a particular goal.
Under this approach, the final TASC saliency map could
weakly incorporate other object modules to achieve partial
exogenous control and could also weight the ranges of
influence appropriately. Learning these relevance weights,
however, is beyond the scope the current work. Despite these
limiting factors, the present result demonstrates that TASC is
able to integrate relevant scene-based saliency predictions to
achieve a performance level that exceeds a simple exogenous
strategy and is not terribly behind a state-of-the-art model
designed to utilize exogenous control with scene-based

Figure 10. TASC performance on the eye-movement data set used in Torralba et al. (2006). TASC is compared to three alternatives
described in Torralba et al.: TOCH, a pure bottom-upmodel (BU), and cross-participant consistency. The dependent measure is goodness of
match to human eye movements, measured as the percent of human eye movements contained in the top 20% of the saliency map. The
results are broken down by fixation number of the human participants within a trial.
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endogenous control and tuned specifically to match the
human data for this experiment.

Relationship between successive fixations

In a separate analysis of the eye-movement data in the
study above, we found a strong predictive relationship of
successive fixation locations. Specifically a model that
generates a saliency map with Gaussian activity centered
around the most recent fixation location performs compa-
rably to state-of-the-art models including TASC and
TOCH. This finding is similar to the center bias modeled
in Zhang, Tong, and Cottrell (2009). Most models of atten-
tion, however, ignore the location of the previous fixation.
When a bias toward the past fixation location was
integrated into TASC, the model’s performance signifi-
cantly improved. This result suggests that future atten-
tional models should incorporate a fixation trajectory
more directly into the saliency predictions. It also spreads
doubt on the standard inhibition-of-return mechanism
often posited to generate fixation sequences in attentional
models (e.g., Itti & Koch, 2000).

Contextual cuing

The notion of scene-based endogenous control is, in part,
motivated by findings suggesting that attention can be
guided by properties of the image other than visual features
of the target. In a seminal study showing that such guidance
can be learned, Chun and Jiang (1998) found that repeated
distractor configurations in a difficult visual search task
lead to faster response times. In this study of contextual
cuing, participants were shown displays like that in

Figure 11a containing a single target—a rotated letter T of
any color—among distractors—Ls at various orientations.
The participants’ task was to report whether the T is
oriented to the left or to the right. Unbeknownst to partic-
ipants, some display configurations (i.e., the spatial layout
of the distractors) were repeated over the course of the
experiment. In these predictive displays, the target and
distractors appeared in the same locations, although their
orientations and colors could change from trial to trial.
After several blocks of trials, participants respond roughly
60 ms faster to predictive displays than to random or
nonpredictive displays. Figure 11b displays the contextual
cuing effect reported in Experiment 1 of Chun and Jiang
(1998). A significant difference in response time between
the nonpredictive and predictive cases is present after the
first epoch, which consists of 5 blocks each with 24 trials—
i.e., 5 presentations of each predictive display.
The contextual cuing effect implies that attention is

guided in part by properties of the entire scene. Thus,
models, such as TOCH, that incorporate scene-based
endogenous control should be able to capture the con-
textual cuing effect. TOCH by itself would be incapable of
simulating a contextual cuing task because it lacks a target-
specific saliency component. The extension of TOCH,
which includes target specific processing (Ehinger et al.,
2009), would perhaps be able to model the contextual cuing
effect but would still be limited by the fact that the scene-
based component produces uniform predictions across the
horizontal plane of an image. In the following simulation,
we demonstrate that TASC is well suited to explain the
contextual cuing effect. Furthermore, we find that the
TASC framework offers a novel interpretation of contex-
tual cuing—supported by empirical studies—that impli-
cates use of a strategy slightly different than scene-based
endogenous control.

Figure 11. (a) A sample contextual cuing display. (b) A reproduction of the main contextual cuing result from Chun and Jiang (1998),
Experiment 1), showing the difference in response times for nonpredictive and predictive displays. Responses are significantly faster for
predictive displays after the first epoch. (c) TASC simulation of Chun and Jiang (Experiment 1), showing the difference in rank between the
nonpredictive and predictive displays. Predictive ranks are significantly lower after the first epoch.
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Our simulation of contextual cuing uses the same model
parameters as in other simulations. However, the training
procedure is modified to conform to the sequential nature
of the contextual cuing task. Instead of training the model
to asymptote as in other simulations, for the contextual
cuing simulation, TASC is exposed to images in series and
learning is incremental. We begin with a training phase in
which a row of modules becomes accustomed to the target,
in this case a sideways T. This training stage corresponds to
the practice trials in a contextual cuing experiment. The
images in the training phase are generated using the same
methods as in Chun and Jiang except that none of the
configurations are predictive. As in Chun and Jiang, the
model is then presented with 30 blocks of 24 images, 12
with predictive displays that repeat from block to block and
12 with nonpredictive displays that always change. Target
ranking in the final combined saliency map is again used as
a measure of response latency. The simulation have one
free parameter: the step size for gradient descent weight
updates in the neural net though in practice the value of this
parameter has little effect on the main results.
Figure 11c shows the difference in ranking between

nonpredictive and predictive trials, averaged across 5 sepa-
rate simulations, and exhibits a pattern very similar to
Chun and Jiang’s behavioral result in Figure 11b. Most
importantly, both figures show no difference between the
two cases at the onset of the experiment and a noticeable
difference beginning in the second epoch. Figure 12a
depicts the block-by-block learning pattern for predic-
tive and nonpredictive displays in TASC. Learning occurs
quickly for the predictive displays and performance is
greatly facilitated compared to the minimal improvement
for nonpredictive displays. Figure 11c can be obtained
from Figure 12a by averaging across groups of 5 blocks
and computing the difference between cases.

The results presented in Figure 12a are obtained from
the final saliency map that—as in previous simulations—
combines outputs across all ranges of influence. However,
we would intuitively expect the longer ranges of influence
to be more responsible for the contextual cuing effect
because short ranges cannot detect configurations of dis-
tractors that extend beyond a local region. This is in fact
the case as shown by Figure 12b, which presents the aver-
age predictive and nonpredictive ranks across the whole
simulation computed using the precombined saliency
maps from the 4 ranges of influence. The first 5 blocks
are removed from each average because significant learn-
ing occurs during those trials. It is clear that the difference
in rank increases as the range of influence grows and that
the target rank for predictive displays decreases with
longer ranges of influences. The two longest ranges of
influence appear to be most responsible for the response
time facilitation.
From the perspective of the TASC control space,

contextual cuing, with its dependence on the long ranges
of influence, corresponds to an attentional strategy that
primarily exploits the region of the control space with
high task specificity and a scene-level contextual scale.
However, TASC predicts that the attentional guidance that
produces the contextual cuing effect is not just an exam-
ple of scene-based endogenous control. As suggested by
Figure 12b, the second longest range of influence—which
covers quadrants of the image—is also capable of produc-
ing the effect. This difference suggests that contextual
cuing might be treated as an intermediate strategy, distinct
from scene-based endogenous control, in the TASC control
space. Figure 2 adds a point in the control space for
contextual cuing with high task specificity and an inter-
mediate contextual scale near the scene end of the
spectrum. Notice also that contextual cuing is placed lower

Figure 12. (a) Block-by-block simulation results from TASC on the Chun and Jiang (1998), Experiment 1) simulation. The ordinate shows
the mean rank of the target for predictive and nonpredictive displays. (b) Mean ranks for the 4 ranges of influence in TASC from the
contextual cuing simulation. The first 5 blocks are removed from the averages. The two longest ranges of influence demonstrate significant
facilitation for displays with predictive contexts.
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than scene-based endogenous control on the task specificity
axis. Because the same configuration could provide
facilitation for a variety of target objects, the relationship
between a specific target and the contextual cuing config-
uration is weaker than the relationship between an object
and the scene gist in a real-world task. In essence,
contextual cuing could still have an effect when the task
is more loosely defined. This novel prediction in TASC that
contextual cuing draws from an intermediate contextual
scale is supported by the contextual cuing experiment in
Olson and Chun (2002), which observed a response time
facilitation when predictive configurations were con-
strained to one quadrant of the image.
Recent research on contextual cuing with real-world

displays has led to a contradictory conclusion about how
global and local contexts affect response times (e.g.,
Brockmole, Castelhano, & Henderson, 2006). For these
pseudo real-world images, observers use global contextual
cues for attentional guidance far more than local contextual
cues. From the perspective of TASC, the conflict between
these two results can be explained by recognizing that
people have a greater wealth of experience viewing real-
world scenes than artificial contextual cuing displays.
Consequently, the attentional system is tuned to be directed
by familiar global properties of real-world scenes but is
only capable of learning more local configurations in
contextual cuing images.

Spatial probability cues

TASC’s emphasis on the role of experience provides a
natural explanation for the contextual cuing effect in terms
of rapid, online learning of the likely target location
contingent on display configuration. To the extent that
TASC incorporates learning of display-contingent targets,
the TASC theory should necessarily also allow for learning
of display-noncontingent targets. That is, if targets appear
in certain locations with high probability, regardless of the
display contents, then the learning mechanisms embedded
in TASC will necessarily discover this probability distri-
bution, and adaptation should be on the same brief time
course as adaptation effects observed in contextual cuing.
Indeed, Experiment 1 of Geng and Behrmann (2005)

shows that individuals respond more rapidly to targets at
locations that frequently contain a target, relative to
locations where targets rarely appear. Further, the time
course of this learning is rapid—RT to high-probability
locations is significantly lower than RT to low-probability
locations when averaged over a block of 180 trials.
The architecture and design of TASC necessarily

reproduces this result. Specifically, the neural networks of
each module implicitly encode the prior probabilities of
targets at each location via the bias weights of the neural
network. That is, whenever the network experiences a
target in some particular location, error-correction training
will increase the bias on that location, thereby raising its

default activation level. Over a sequence of trials, if a target
appears at one location with high probability and another
location with low probability, the network will yield higher
activation for the target at the probable location, and
consequently, the target–distractor saliency ratio will be
greater for that target and the response time will be faster.
Geng and Behrmann also find that response times

associated with targets in low-probability locations are
slower when the high-probability location contains a
distractor, versus when the location is empty. TASC has a
ready explanation for this finding. The high-probability
location will have an activation bias, regardless of the
object appearing at that location. If any object appears at
that location, target or otherwise, it will likely increase the
activation at that location; call this spurious activation. The
sum of the activation bias and the spurious activation
may be large enough that in the final saliency map, the
sum will outrank the activation of the actual target at
the low-probability location, and if ranking determines the
prioritization of search, response latencies will increase.
However, when the high-probability location is empty,
the absence of spurious activation at that location should
make it less likely that the high-probability location obtains
saliency that outranks that of the low-probability location.

Figure–ground assignment

The three primary control strategies presented in the
Introduction section occupy three of the four corners of the
TASC control space. We suggested that contextual cuing
might populate a distinct point in the control space, but
there is an obvious gap in the fourth corner of the space,
corresponding to a control strategy involving a low degree
of task specificity and scene-level contextual guidance. If
attention truly has access to all points in the TASC control
space, we should be able to identify a situation in which the
strategy in the fourth corner is employed.
One candidate is the lower region effect observed in

figure–ground assignment. Vecera, Vogel, and Woodman
(2002) observed that for displays such as the first and third
panels of Figure 13, viewers tend to perceive the lower
region as the figure (the foreground) regardless of the
arrangement of colors. This result can be interpreted as an
attentional bias in favor of the lower region. Vecera et al.
suggest a plausible basis for the effect: because of our body
orientation with respect to the ground and the sky, objects
of interest are more often found in the lower region of our
field of view.
An interpretation of the lower region effect is not readily

obtainable from existing attentional models. However, from
the perspective of TASC, the effect can be naturally viewed
in terms of an attentional control strategy that is based on
overall scene properties (i.e., a scene-level contextual scale)
and no specific target of search (i.e., low task specificity).
We have placed this strategy, lower region, in the fourth
corner of the control space (Figure 2). Lower region is a
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natural complement to the three primary control strategies
described previously.
To demonstrate that TASC obtains the lower region

effect, our implementation of TASC with 13 real-world
object modules was presented with displays similar to those
in Vecera et al. Because figure–ground assignment is
performed quickly, and the limited processing time might
yield a lower signal-to-noise ratio of early visual represen-
tations, we added noise to the feature detector responses
in the model. The noise primarily served to obtain more
overall partial activation of features. The saliency maps in
the second and fourth panels of Figure 13 are based on
combining all object modules and only the longest range
of influence. Because the displays bear no resemblance to
real-world images, the activity patterns in the saliency
maps are difficult to interpret. However, TASC does show
a clear bias for attending the lower region of the image
regardless of the color layout—i.e., there is more saliency
activity in the bottom half of both maps. These saliency
maps are obtained from a limited version of TASC with
only 13 objects and thus one can justifiably be cautious in
making strong claims about this result. Some of the 13
objects seem likely to appear in the lower region of an
image (e.g., car, person, bike, sidewalk, road); others seem
likely to appear in the upper region (e.g., building, tree,
window, painting); and others seem difficult to predict
(light, head, sign, mug). Thus, the emergent result obtained
from TASC seems nontrivial. Furthermore, though other
models of attention may be able to partially achieve this
result because they are trained on a set of similar images,
none of the models can be specifically used to generate
task-independent global attentional guidance of this sort.
Throughout this paper, the term exogenous control has

been used to refer to bottom-up attentional processing at a
feature-level contextual scale. This usage is consistent with
most of the literature on attention. In the lower region
effect, however, we recognize a different form of exoge-
nous control that operates at a scene-level contextual scale.
From the perspective of the TASC framework, exogenous
attention—defined to be any attention that is driven primar-
ily by factors outside the individual—should correspond

to the entire bottom region in the control space—i.e., low
task specificity across all contextual scales. This new con-
ceptualization of exogenous attention may prove useful in
evaluating attentional behavior in unstructured viewing
situations. Although we favor this novel perspective, we
continue to use the term exogenous control with its tradi-
tional meaning throughout the rest of this article.

Discussion

We have introduced a framework for attentional control
that integrates many distinct control strategies. This frame-
work, instantiated in the TASC model, makes contact with
a wide range of attentional phenomena, including visual
search in both naturalistic scenes and artificial displays
consisting of simple elements varying in color and shape.
Our goal in this work was to develop TASC to the point that
it serves as an existence proof of the possibility that diverse
forms of attentional control can be unified in a coherent
theoretical framework.
TASC borrows from many other theories of attention,

and in so doing, it serves as a synthesis of existing theories
and as a means of characterizing the relationships among
the theories. TASC follows a clear trend in the literature
toward models that are comprehensive in scope and
incorporate multiple attentional control strategies (e.g.,
Ehinger et al., 2009; Kanan et al., 2009; Siagian & Itti,
2007; Torralba et al., 2006; Zhang et al., 2008). TASC is
distinguished by the fact that the distinct control strategies
in TASC are implemented by a uniform, homogeneous
architecture. Through simulations, we showed that exoge-
nous control, feature-based endogenous control, and scene-
based endogenous control could all emerge from the same
underlying processing machinery.
Beyond accounting for phenomena that many other

models have addressed, the TASC control space led us to
explore the literature to identify phenomena that reflected
control strategies not considered by other models and
that—in contrast—are predicted to exist by TASC. First, in

Figure 13. Sample displays similar to those used in the figure–ground assignment experiments in Vecera et al. (2002) and the associated
outputs from TASC operating at the longest range of influence and with low task specificity. Saliency maps represent a combination across
13 object models trained on real-world images. A bias is shown for the lower region in both displays.
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the contextual cuing paradigm, our simulations of TASC
predict that contextual cuing might result from spatial
regularities at the subscene level—say, by repetition of
configurations within a quadrant (Figure 12b). This
prediction—a necessary consequence of the TASC frame-
work—has been verified in experimental studies (Olson &
Chun, 2002). Second, the TASC control space is populated
by three primary strategies, and the space suggests a
complementary fourth strategy—scene-based exogenous
control. In a review of the literature, we identified a
phenomenon that is well described by this control strategy:
the lower region effect found in figure–ground assignment
(Vecera et al., 2002). Individuals’ bias to treat the lower
region of an image as the figure is consistent with the notion
of task-independent attentional control based on scene
properties. An important aspect of TASC is that it provides
a unified synthesis of existing models. However, these
phenomena demonstrate that TASC also yields novel
predictions about attention and is capable of explaining
data that eluded previous models. Furthermore, the exis-
tence of these phenomena suggests that we may find tasks
that require other attentional strategies occupying new
locations in the space. For example, the categorical visual
search observed in Schmidt and Zelinsky (2009) is consis-
tent with an attentional strategy operating with a medium
amount of task specificity (i.e., groups of objects are of
primary interest).
Embedded in TASC is a key proposition: attentional

control is fundamentally experience based. TASC consists
of a collection of modules, each of which is specialized to
the detection of a particular entity, and is assumed to arise
from interacting with the world, and to continually adapt to
the ongoing stream of experience. These entities can be
what are traditionally referred to as features, such as the
color red, or simple shapes, such as a square, or complex,
hierarchical, articulated objects, such as a person. We have
loosely referred to these entities as objects, although this
usage stretches the canonical notion of objects in vision.
The important point is that these objects are functionally
defined—they are the goals of visual search, goals that have
been learned and rewarded in the past.
According to TASC, attentional control varies in the

degree of task (object) specificity via the combination of
object modules. By this conception, what is typically
considered top-down control occurs when one or a small
number of object modules contribute to saliency; and what
is typically considered bottom-up control occurs when all
object modules contribute to saliency. Instead of consider-
ing exogenous control as a search with no target in mind,
TASC conceptualizes it as a search for all possible targets.
Consequently, TASC rejects the notion of pure bottom-up
saliency, instead favoring the novel hypothesis that control
always operates in a top-down manner, tuned through
experience. If attention is always combining across a set of
object modules, it is important to specify how this
combination is performed. In our simulations, we found
the use of a max or disjunction rule to be critical. This

approach yields the sensible behavior that a region should
be salient if it contains any of the potential target objects.
Failure of attentional control to exclude task-irrelevant

signals can be attributed to limitations on the degree of task
specificity that can be achieved. On grounds of survival, it
may be adaptive for an organism not to become so focused
on the task at hand that all extraneous warning signals from
the environment are suppressed. The implication for a
theory like TASC is that critical object modules contribute
to saliency even when not pertinent to current goals. For
example, the presence of a human face may be important to
many different goals, including basic survival in a
community. Thus, attentional capture can be considered
not as a failure of attentional control to stay on task but as
the inability of attentional control to narrow to a single task.

The role of experience

Several recent theories of attention have focused on the
role of top-down knowledge in attentional control. TASC is
motivated in part by TOCH, whose contextual component,
presented in Torralba (2001, 2003), encodes and exploits
correlations between scene gist and the locations of specific
objects. Rao, Zelinsky, Hayhoe, and Ballard (2002) imple-
ment a model of visual search in which saliency is based on
how well local visual features match a specific object
template. Similarly, the SAIM model of Heinke and
Humphreys (1997, 2003) incorporates object templates to
determine a focus of attention via constraint satisfaction
dynamics.
In contrast to these theories that assume that experience

leads to the formation of internal models of specific objects
and their likely locations, other theories assume that what is
learned is not about objects per se, but rather statistical
properties of the environment, which might steer attention
to locations containing surprising visual information (Itti &
Baldi, 2009; Zhang et al., 2008) or might optimize attention
to situations that are likely to occur in the future (e.g.,
Mozer & Baldwin, 2008; Mozer, Shettel, & Vecera, 2006).
The various statistical theories agree in claiming that
attention is modulated by statistics of the environment,
but they differ in terms of the time period over which
statistics are collected. Some theories rely on life long
history (e.g., Kanan et al., 2009; Torralba, 2003; Zhang
et al., 2008), some theories rely on the recent history of
experience and suggest trial-to-trial modulations of atten-
tion (e.g., Itti & Baldi, 2009, temporal surprise; Mozer &
Baldwin, 2008; Mozer et al., 2006; Yu, Dayan, & Cohen,
2009), and finally, some theories assume that experience
does not extend beyond the statistics of the current image
(e.g., Bruce & Tsotsos, 2009; Itti & Baldi, 2009, spatial
surprise; Torralba et al., 2006, bottom-up component). Like
all of these theories, TASC can be cast in a probabilistic
framework and the saliency values can be readily inter-
preted as probabilities. TASC has the virtue of spanning a
range of time scales of adaptation. Some simulations we
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presented rely on experience on the time scale of years
(e.g., attention in real-world scenes, lower region bias
in figure–ground assignment); other simulations rely on
experience on the time scale of minutes (e.g., contextual
cuing). Adaptation to experience is seen on an even shorter
time scale in research focusing on sequential effects in
attention (e.g., Geng & Behrmann, 2005; Kristjansson,
2006; Maljkovic & Nakayama, 1994). Just as TASC adapts
to the block-by-block statistics in contextual cuing experi-
ments, the neural networks that learn specific object
associations exhibit trial-by-trial sequential dependencies
due to online learning. Regardless of how TASC plays out
compared to other probabilistic theories, we view TASC as
the culmination of a shift in the theoretical literature, from
the assumption of hardwired, fixed mechanisms of attention
to the view that every aspect of attentional control relies on
adaptation to the ongoing stream of experience.

Adaptation of attentional control

Up to this point, we have focused on one aspect of
adaptation: how experience tunes a module to perform a
specific task. This tuning occurs via a gradient-descent
update of the weights in the module’s associative network
following each trial in which the task is performed. This
online updating provides a basis for explaining phenomena
such as contextual cuing and probabilistic spatial cuing.
Beyond this notion of adaptation, TASC suggests a

complementary type of adaptation that we have not yet
discussed: how experience shapes the set of modules
deemed relevant to a particular search goal. The TASC
architecture assumes that for a specific goal, the saliency
map is obtained by taking a disjunction over a subset of
modules deemed relevant to the goal of search. In
simulations we have presented, the relevant subset of
modules was assumed to be known and fixed. Ultimately,
however, the determination of relevance must be learned
as well—a type of meta-attentional learning. This form of
learning has been ignored up to this point in the atten-
tional literature, though it seems to be an important part of
the complete picture.

The relation of attention and object recognition

In TASC, the goal of attention is to identify locations in
the visual field that contain objects of interest. Other recent
theories of attention also relate attentional saliency to the
probability that an object is present (Bruce & Tsotsos,
2009; Gao, Mahadevan, & Vasconcelos, 2008; Kanan
et al., 2009; Mozer & Baldwin, 2008; Mozer et al., 2006;
Navalpakkam & Itti, 2007; Torralba et al., 2006; Zhang
et al., 2008). If attention is conceptualized as being
fundamentally a means of object detection, then what
distinguishes the role of attention from the role of full-
blown object recognition?

Our answer, in essence, is that attention performs a quick-
but-dirty sort of recognition: attention operates rapidly to
select locations that are likely to contain a target. However,
speed is obtained by performing only a coarse, rudimentary
analysis of the visual field. Three aspects of TASC are
responsible for achieving a quick-but-dirty response:

1. Information bottlenecks. TASC has bottlenecks at
various stages of processing that restrict the visual
information used to produce a response. Early in
processing, principal components analysis (PCA) and
subsampling operate to reduce the dimensionality of
the visual representation. Late in processing, a
bottleneck is imposed on the neural network by the
small number of hidden units through which activa-
tion must flow to reach the saliency map. The hidden
unit bottleneck effectively imposes a second PCA
compression (Baldi & Hornik, 1989); this PCA is
object-specific, whereas the PCA early in processing
is always the same. Although some form of dimen-
sionality reduction is widely used in neurobiolog-
ical, psychological, and artificial intelligence models
of object recognition as a means of filtering noise
and redundancy in the visual representation, the
degree of dimensionality reduction in TASC is far
more severe, preserving only the strongest, coarsest
regularities in the visual representation.

2. No feedback loops. Processing in TASC is one pass
and purely feedforward. In contrast, models of object
recognition typically have some form of recurrence,
whether at the fine grain via feedback projections in
neurobiological models of the ventral visual stream
(e.g., Bullier, 2001), or at an intermediate grain via
sequences of fixations to foveate on critical visual
information in models of scene analysis that incor-
porate an anisotropic retina (e.g., Henderson &
Hollingworth, 1998), or at a coarse grain via itera-
tive hypothesis testing and confirmation in computer
vision (e.g., Lowe, 1991). Of course feedback loops
exist in TASC to accomplish the different forms of
adaptation and learning. However, these loops do not
change the response for the current image; they only
have an impact on subsequent images as in the con-
textual cuing simulation.

3. Linearity of associative neural network. The line-
arity of the hidden unit response in the associative
neural network restricts the complexity of the map-
ping that can be learned to a rank-limited linear
transform from the input to the output. Linearity intro-
duces strong restrictions on the accuracy of object
recognition (Mozer, 1991).

The TASC modules compute an estimate of how likely
each location in the visual field is to contain a specific
object. The accuracy of this estimate is limited by the
three properties of TASC we just described: information
bottlenecks, no internal feedback, and linearity of the
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associative net. These three properties also play a large role
in accounting for various experimental data, e.g., the inef-
ficiency of conjunction search. Although one could, in
principle, design a model that more reliably determines
the presence or absence of an object in the visual field,
it would effectively become a recognition model, not an
attentional model. In addition, to perform object recog-
nition in parallel across the visual field would require an
overwhelming amount of hardware.
Early selection theories, including TASC, suppose that

the role of attention is to provide rapid, efficient guidance to
resource-limited processes involved in object recognition
and scene interpretation. Classic early selection theories
(e.g., Broadbent, 1954; Treisman, 1960; Treisman &
Gelade, 1980) posited that guidance is based on hardwired
mechanisms that utilize primitive visual features such as
motion and contrast in intensity or color or texture. This
view persisted through the 1990s, even in theories of
feature-based exogenous control (Wolfe, 1994), and even
in modern computational models (e.g., Itti & Koch, 2000;
Itti et al., 1998; Mozer, 1991). Only recently have early
selection theories begun to consider the alternative view:
through experience with one’s environment, an individual
learns to guide attention in a goal-relevant manner. TASC
represents a culmination of this view by adopting the strong
hypothesis that all forms of attentional control are funda-
mentally experience based. Whether TASC or some less
extreme variant proves to be correct, what is perhaps the
key contribution of our work is an appreciation of the fun-
damental shift in theoretical views of spatial attention.

Appendix A

In this section, we give an in-depth presentation of our
implementation of TASC. Though not necessary for
understanding the main thrust of the TASC framework,
the equations and parameters described here are necessary
for recreating an implementation. This is meant as a
supplement to the TASC implementation section in the
body of the paper that presents the overall framework and
coarse processing stages of the model. The image process-
ing steps described below are all performed on a patchwise
basis and correspond to the stages illustrated on the right
side of Figure 7. The model uses 4 different patch sizes for
the 4 ranges of influence, 71 = 1.56, 72 = 6.25, 73 = 25,
and 74 = 100 ordered from short to long range of
influence, where 7 represents the percent of the image
the patch spans. The patch sizes are depicted in Figure A1a.

Feature extraction

TASC begins with an image such as in Figure A1a. From
this image, the model records feature activations along 8
different channels: 4 color opponencies and 4 orientations

as shown in Figure A2a. The value of each color channel is
the difference between the RGB value for that color and its
opposing color (red opposes green and blue opposes
yellow). All negative color feature values are set to 0. If
R, G, and B are the pixel values and Y = (R + G)/2, then the
red, green, blue, and yellow feature values are given by fr =
max(0, R j G), fg = max(0, G j R), fb = max(0, B j Y),
and fy = max(0, Y j B). Technically, the feature values
should be denoted R(x, y) and fr(x, y) for each pixel
location, (x, y), but we drop the location specification when
it is not necessary. For the orientation channels, the
intensity image is convolved with Gabor filters tuned to 4
different orientations: 0, 45, 90, 135 degrees. All feature
extraction parameters are the same across the 4 ranges of
influence.
The TASC feature extraction stage is very similar to

feature extraction performed in the NI and TOCH models.
All models use the same process for extracting orientation
values. NI uses color opponency values similar to those
used in TASC. In Itti and Koch (2000), which forms the
basis for the early stages of NI, two color channels are used:
red–green and blue–yellow (negative values allowed).
TASC uses these same values but divides them into 4
channels to avoid negative feature values.
The primary difference between feature extraction in

TASC and the NI and TOCH models is that TASC does not
extract features at multiple spatial frequencies. Feature
extraction utilizing multiple spatial frequencies, obtained,
for example, through the steerable pyramid (Simoncelli &
Freeman, 1995), is typically employed to improve the
model’s ability to handle image data sets with a diverse
range of object and scene scales. To reduce the computa-
tional load, we chose to perform feature extraction at a
single spatial frequency in TASC and found the results
satisfactory for our simulations. Nevertheless, we envision
a complete implementation of TASC that includes feature
extraction at multiple spatial frequencies and expect that
this addition would improve the overall performance.

Contrast enhancement

Feature extraction is followed by a contrast enhancement
stage that mimics neural processing mechanisms in visual
cortex. This stage strengthens the response to regions that
differ significantly from their surround. Contrast enhance-
ment is implemented in TASC by weighting each feature
value by the ratio of center activity to surround activity.
Figure A2b shows the result of contrast enhancement of the
activations in Figure A2a. The model computes center and
surround activity by convolving the feature data for each
channel by two Gaussian kernels. Both kernels have a peak
of 1, but they differ in their standard deviation, with Ac

corresponding the center kernel and As to the surround
kernel. For each pixel and feature channel, the model
obtains a center value, cent, which measures the amount of

Journal of Vision (2011) 11(2):8, 1–30 Wilder, Mozer, & Wickens 22



activity close to that pixel location and a surround value,
surr, that measures the activity over the wider region
surrounding the location. The contrast value, c(x, y), is
computed for each of the 8 feature channels as follows
using the red feature channel as an example:

cr x; yð Þ ¼ centrðx; yÞ
surrrðx; yÞ fr x; yð Þ; ðA1Þ

where

centr x; yð Þ ¼
X

i;jZI

fr i; jð Þe
jðxjiÞ2
2Ac

2 e
jðyjjÞ2
2Ac

2
and

surrr x; yð Þ ¼
X

i;jZI

fr i; jð Þe
jðxjiÞ2
2As

2 e
jðyjjÞ2
2As

2 ; ðA2Þ

with (i, j) iterating over all pixel locations in the image I.

Because feature values are always nonnegative, the
surround kernel bounds the center kernels—i.e., surr Q
cent, and thus the ratio of center to surround will always be
between 0 and 1. If most of the activity for a specific feature
is in the center, the ratio will be close to 1 and the feature
activity at that location will remain strong. If there is
significant activity for the specific feature in the surround-
ing regions, this ratio will be close to 0 and the feature value
at that pixel will be reduced in strength.
For the feature extraction and contrast enhancement

stages, the model computes the f and c values from the
whole image rather than by patch. For feature extraction,
this avoids boundary issues at the edges of the patch when
convolving the image with the Gabor filter. For the contrast
enhancement stage, this allows the surrounding areas of
a location to have an influence on the contrast value even
if they reside in a different patch. The standard deviations
for the center and surround kernels are Ac = 0.05N and
As = 0.5N, where the image dimension is N � N. These

Figure A1. Mapping from patch in image to patch in saliency map for the 4 TASC modules that vary from short range of influence (left) to
long range of influence (right). The saliency maps (b) are obtained by averaging overlapping patch maps obtained for the image in (a).

Figure A2. Activities in TASC for the first two stages of processing: (a) feature extraction and (b) contrast enhancement. The original
image is shown in Figure A1a. The feature channels on top are red, green, blue, and yellow. The four channels on the bottom correspond to
orientations of 0, 45, 90, and 135 degrees from left to right.
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parameters lead to a contrast mechanism that compares a
local region to a large part of the image, i.e., contrasting
occurs at a global scale. The surround region could be
shrunk to yield more local contrasting. We chose these
values primarily because the content of synthetic images
used in visual search tasks is usually spread across the
whole image. These parameters were left fixed for all other
image data sets. However, a smaller surround would
perhaps be more appropriate for real-world images. The
same center and surround parameters are also used across
all ranges of influence in this implementation, though, these
parameters could differ from one range of influence to the
next. For example, at the long range of influence, a larger
surround value may be preferred. It is also possible that
several contrast values could be obtained by varying the
center and surround percentages. This would, in essence,
provide another form of multi-scale processing.

Dimensionality reduction

After the contrast enhancement stage, TASC maintains 8
feature values per pixel. Due to the redundancy of these
features and redundancy of nearby locations in a patch,
dimensionality reduction is called for to streamline com-
putation. Following the methods used in TOCH for gist
processing, the dimensionality of the representation in
TASC is significantly reduced through subsampling and
principal components analysis while preserving key infor-
mation needed for scene classification.

Subsampling

As in TOCH, TASC uses a simple subsampling scheme
where each pixel in the subsampled image represents the
mean value of all pixels in a corresponding unique,
nonoverlapping rectangular region in the original data.
Subsampling is performed only within feature channels so
for each subsampled region in the image the model still
maintains 8 feature values. If the original patch dimension
is n � n and patches are subsampled by a factor >, the new
patch dimension becomes n/> � n/>. Each pixel in the
subsampled data corresponds to the average of all pixels in
a > � > block in the original data.
The amount of subsampling varies across ranges of

influence in TASC; we aim to achieve a roughly constant
bandwidth of data across ranges of influence, leading to a
greater reduction in the longer ranges of influence. This
approach fits well with both NI and TOCH. Specifically,
NI operates with a short range of influence and does not
perform any subsampling while TOCH operates at a long
range of influence and uses significant subsampling of
feature data. TASC uses the following values of > for the
four ranges of influence from short to long: >1 = 4, >2 = 8,

>3 = 8, and >4 = 16. These specific values were chosen
to yield a reasonable computational load in the following
principal components analysis stage. However, changing
these values does not significantly affect the model’s
performance.

Principal components analysis

After subsampling, the model uses principal components
analysis (PCA) to further reduce the dimensionality of data.
This transform extracts the critical feature properties of a
patch and discards extraneous feature information. PCA
analysis is done separately for each of the 8 feature chan-
nels and 4 ranges of influence. For each feature channel,
the top ‘ principal components are preserved. The PCA
projections are based on training on a set of patches
extracted from our image database—using several ran-
domly distributed patches per image. The database contains
roughly 2,500 images including many varied real-world
scenes and some synthetic visual search images. Note that
for a given feature channel and range of influence, the same
PCA projection is used for all patches, thus yielding a
location-independent reduction. Additionally, the same
PCA projections are used across all simulations described
in the Simulations of TASC section—for both images with
artificial displays and real-world scenes.
We chose to perform PCA on each feature channel to

maintain a constant bandwidth per feature dimension. The
alternative would involve lumping all feature data together
and performing one PCA projection. In this case, PCA may
find that a particular feature dimension does not have
significant discrimination power and thus would not
maintain any information about this feature channel in the
top principal components. This could be problematic for
visual search tasks where the discarded feature plays a
defining role. This problem could be avoided by carefully
controlling the database used for deriving the PCA pro-
jections; however, we found it preferable to instead treat
the individual feature channels independently.
If the original patch size is n � n, the dimensionality

of each feature channel after subsampling is (n/>)2. After
PCA, there are only ‘ data points per channel. The full
patch data, x, are obtained by concatenating the data from
each feature channel into a vector with dimensionality 8‘.
The number of principal components used varies across
the ranges of influence; from short range to long range,
‘1 = 1, ‘2 = 3, ‘3 = 9, and ‘4 = 27. Because there are far
more patches per image at the shorter ranges of influence,
the total number of data points per image decreases as the
range of influence becomes longer. At the shortest range
of influence, there are 15 � 15 = 225 patches per image
(there are an odd number of patches because patches
overlap). At progressively longer ranges of influence,
there are 7 � 7 = 49, 3 � 3 = 9, and 1 � 1 = 1 patches per
image. From short to long range of influence, the total
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data points used per image are 225 � 8 � 1 = 1800, 49 �
8 � 3 = 1176, 9 � 8 � 9 = 648, and 1 � 8 � 27 = 216
(patches � features � ‘).
Figure A3 provides an informative view into what

the PCA stage achieves by depicting which regions each
principal component favors for each feature channel. Each
box in this figure displays the values of a specific principal
component vector for a specific channel. Lighter values
correspond to stronger weights for the features at that
location in the patch. Principal components decrease in
importance from top to bottom. The first principal com-
ponent typically represents the DC level of activity. Sub-
sequent principal components provide more fine-grained
spatial selectivity. The principal component vectors
reconstructed in this figure correspond to the second

longest range of influence for which 9 principal compo-
nents are used. The PCA projections used for the other
ranges of influence exhibited a very similar pattern.
Figure A4 shows the representation for the image in

Figure A1a after subsampling and PCA at the 4 ranges of
influence. Each row in Figures A4a–A4c shows 8 com-
posite images, one for each feature channel, formed by
assembling the nth principal component value for each
patch. The top row corresponds to the first principal com-
ponent and lower rows display subsequent principal com-
ponents with decreasing significance. Figure A4a is the
representation for the shortest range of influence. At the
longest range of influence (Figure A4d), there is only one
patch per image but more principal components (now shown
along the columns).

Figure A3. Reconstructed principal component weights for the 8 feature channels. The top row corresponds to the first principal
component. See text for more detailed explanation.
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Task-specific associations

In TASC, the associative memory is implemented as a
set of neural networks that process the image in patches.
For each patch, there is set of input units to the network
representing the patch data, xp, after dimensionality
reduction. Each set of input units is fully connected to a
set of output units via a layer of hidden units. The hidden
units, however, are linear, and their purpose therefore
serves to limit the rank of the mapping from input to
output.
Because the shorter ranges of influence have far more

patches than the longer ranges of influence, we make the
hidden-layer bottleneck smaller at the shorter ranges, just
as we chose a smaller number of principal components at
the shorter ranges of influence. In fact, for simplicity, we
simply chose the number of hidden units at a given range of
influence, i, denoted ri, to be the same as the number of
principal components, previously termed ‘i: r1 = 1, r2 = 3,
r3 = 9, and r4 = 27 for the 4 ranges of influence from short
to long. (This choice results in a factor of eight compres-
sion of the image data, because the ‘i principal components
are computed for each of the eight feature dimensions.)
The rank of the mapping from input to output is deter-
mined by ri, and when the number of patches is taken into
account, our choice of the {ri} obtains a roughly equal
number of descriptive features per pixel across the four
ranges of influence.
If we use Vp to denote the weight matrix for the

mapping from input to hidden units, and Wp to denote the
weight matrix for the mapping from hidden to output, and
the input-to-hidden mapping is linear and the hidden-to-
output mapping includes a logistic squashing function, the
output vector for a patch, op can be computed as

op ¼ hðWpVpxpÞ; ðA3Þ

where h(x) is the logistic function, h(x) = 1/(1 + ejx). The
logistic function yields output values bounded in the [0, 1]
range, which are readily interpreted as degrees of saliency.
For computational purposes, we constrain the dimension
of op to be smaller than the original patch dimensions

because saliency predictions do not need to be as fine-
grained as the original pixel information. The reduction is
such that the final saliency map has 32 � 32 pixels.
To obtain the final saliency map, the outputs from the

individual patches must be combined. Because the patches
overlap (except at the longest range of influence, which
has only a single patch), the patchwise outputs must be
synthesized. Either two or four patches predict the saliency
at a given location, for most locations. (The corners are
predicted by only a single patch.) The patchwise outputs are
combined by averaging. That is, the final saliency value at a
particular (x, y) location, s(x, y), is computed as an average
of all patch output values at that location:

s x; yð Þ ¼ 1

k4ðx; yÞk
X

pZ4ðx;yÞ
op gp x; yð Þ� �

; ðA4Þ

where 4(x, y) is the set of patches that contribute to point
(x, y) in the saliency map, |4(x, y)| is the cardinality of
that set, and gp(x, y) is a function that maps the coordinates
in the saliency map to patch coordinates for a particular
patch p. The final saliency map for a module is then
smoothed via convolution with a Gaussian kernel to reduce
artifacts due to patch edges. This smoothing also helps
assure consistency across neighboring saliency values.

Combining multiple modules

Several different approaches are possible for combining
the saliency maps from multiple modules. A weighted
averaging rule will produce the same salience whether
many modules have modest activity or a single module has
high activity. Consider the task of searching for wheeled
vehicles. A strong response obtained from a bike module
will be moderated by weak responses from a car or bus
module, due to the averaging of module outputs. Instead of
averaging, perhaps it makes sense to consider a module
combination rule in which the overall saliency at a location
is the maximum activation at that location across the subset
of modules deemed relevant for a task.
The average andmaximum activation rules can be thought

of as implementing soft conjunction and disjunction
operators. In the former case, a location is salient to the
extent that every module produces strong output; in the
latter case, a location is salient to the extent that any
module produces strong output. In the case where the goal
is highly specific—requiring only one or a small number
of modules—the two rules will produce similar results,
because as fewer modules are involved, the average
module output and the maximum module output converge
on the same value. When goals are less constrained,
however, the predictions of these approaches diverge. As
described in the body of the paper, we use the max rule in
this implementation.

Figure A4. PCA activities in TASC at the four ranges of influence
(shortest (a) to longest (d)) corresponding to the image in
Figure A1a. A separate representation is maintained for each
feature channel (here the ordering is: red, green, blue, yellow, 0, 45,
90, 135). PCA is computed at the patch level. Each inner square in
these figures corresponds to a PCA value for a specific feature
channel and patch. At the shortest range of influence, there are
15 � 15 patches. At the longest range of influence, there is only
one patch per image. In (a)–(c), the most important component is
in the top row and less important components are in lower rows.
In (d), the principal components decrease in importance from left
to right. Lighter values correspond to greater activation.
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Formally, the max combination rule is defined as
follows. Let so,r(x, y) be the saliency map value for target
object o and range of influence r at location (x, y). The
values in the combined saliency map are given by

scðx; yÞ ¼ max
o;rZM

so;rðx; yÞ; ðA5Þ

where M is the set of modules relevant to the current goal.
In each of the simulations, M is selected to fit the
constraints of the search task. In most cases, M contains
modules associated with one specific target object, though
at times the model combines across multiple target objects.
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